Micro to Macro Thermo - Mechanical Simulation of Wafer Level Packaging
نویسنده
چکیده
Due to the CPU limitation of the computer hardware currently available, the threedimensional full-scaled finite element model of wafer level packaging is impractical for the reliability analysis and fatigue life prediction. In order to significantly reduce the simulation CPU time, an equivalent beam method based on the micro-macro technique with multi-point constraint method is proposed in the present study. The proposed novel equivalent beam consists of three/five sections to simulate the three-dimensional solder joint with different upper/lower pad size. Moreover, the total length of the proposed equivalent beam equals to the stand-of-height of the realistic solder joint. To compare the results of equivalent beam and full-scaled model, a wafer level packaging with 48 I/O is selected as a benchmark model in this study. The result shows that the equivalent beam model can reduce approximately 80 percent CPU time, and good agreement between the equivalent beam model and the full-scaled model are achieved. @DOI: 10.1115/1.1604159#
منابع مشابه
Novel Bonding technologies for wafer-level transparent packaging of MOEMS
Packaging costs of Micro-Electro-Mechanical System (MEMS) are still contributing with >50% to the total costs of most devices. Aligned wafer bonding techniques for Wafer-level packaging (WLP) demonstrates a huge potential to reduce these costs due to a smaller size of the total package, improved performance and shorter time to market. A special group of MEMS devices, Micro-OptoElectro-Mechanica...
متن کاملSelective low temperature microcap packaging technique through flip chip and wafer level alignment
In this study, a new technique of selective microcap bonding for packaging 3-D MEMS (Micro Electro Mechanical Systems) devices is presented. Microcap bonding on a selected area of the host wafer was successfully demonstrated through flip chip and wafer level alignment. A passivation treatment was developed to separate the microcap from the carrier wafer. A thick metal nickel (Ni) microcap was f...
متن کاملA three-scale approach to the numerical simulation of metallic bonding for MEMS packaging
In this work we present a numerical, multi-scale approach to estimate the strength of a wafer-to-wafer metallic thermo-compression bonding. Following a top-down approach, the mechanical problem is handled at three different length scales. Taking into account control variables such as temperature, overall applied force over the wafer and contact surface roughness, it is shown that the proposed a...
متن کاملThermo-Electro Mechanical Impedance based Structural Health Monitoring: Euler- Bernoulli Beam Modeling
In recent years, impedance measurement method by piezoelectric (PZT) wafer activesensor (PWAS) has been widely adopted for non-destructive evaluation (NDE). In this method, theelectrical impedance of a bonded PWAS is used to detect a structural defect. The electro-mechanicalcoupling of PZT materials constructs the original principle of this method. Accordingly, the electricalimpedance of PWAS c...
متن کاملEffect of Wafer Level Underfill on the Microbump Reliability of Ultrathin-Chip Stacking Type 3D-IC Assembly during Thermal Cycling Tests
The microbump (μ-bump) reliability of 3D integrated circuit (3D-IC) packaging must be enhanced, in consideration of the multi-chip assembly, during temperature cycling tests (TCT). This research proposes vehicle fabrications, experimental implements, and a nonlinear finite element analysis to systematically investigate the assembled packaging architecture that stacks four thin chips through the...
متن کامل